Birzeit University Mathematics Department Math 234

First Exam-answers

Mohammad Saleh (1 at 11), (4 at 12:20)

Q1 (40 points) Answer the following statements by true or false:

- (1) If A, B are square $n \times n$ nonzero matrices such that AB = 0, then A and B are singular. T
- (2) If A = LU is the LU-factorizaton and A is singular then U is singular. T
- (3) If A is symmetric and skew symmetric then A must be a zero matrix. (A is skew symmetric if $A^T = -A$). T
- (4) If A is an $n \times n$ nonsingular matrix then $det(adj(A)) = (det(A))^{n-1}$. T
- (5) If the system Ax = b is consistent then b is a linear combinations of the columns of A. T
- (6) If A, B are square $n \times n$ matrices and AB is singular then A and B are singular. F
- (7) If A is row equivalent to B then det(A) = det(B). F
- (8) If the coefficient matrix of the system AX = 0 is singular then the system has infinitely many solutions. T
- (9) In the linear system Ax = b, if b is a linear combinations of the columns of A then the system has a unique solution. F
- (10) If the row echelon form of the matrix A involves a free variable, then the linear system Ax = b has infinitely many solutions. F
- (11) a square matrix A is nonsingular iff its row echelon form is the identity matrix. F
- (12) If AB = AC, $A \neq 0$, then C = B. F
- (13) In the linear system Ax = b, if b is the first column of A, then the system has infinitely many solutions. F
- (14) If det(A) = det(B), then A = B. F
- (15) A square matrix A is nonsingular iff its RREF is the identity matrix. T
- (16) In the linear system AX = b, if $b = a_1 a_2 + 3a_4, a_1 = -a_3$ then the system has infinite solutions. T
- (17) If the coefficient matrix of the system Ax = 0 is singular then the system has infinite solutions. T
- (18) The vector $(0,0,0)^T$ is a linear combination of the vectors $(1,2,3)^T$, $(1,4,1)^T$, $(2,3,1)^T$. T
- (19) If $A \neq B$, then $det(A) \neq det(B)$. F
- (20) If A and B are not invertible, then det(A) = det(B). T
- (21) If an $n \times n$ matrix A is row equivalent to I_n then $det(A) = \pm 1$. F

Q2:(45points) Circle the correct answer:

1 If A is a 4×3 matrix such that Ax = 0 has only the zero solution, and $b = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 0 \end{pmatrix}$, then the

system Ax = b

- (a) has exactly one solution
- (b) is either inconsistent or has a unique solution. T
- (c) is either inconsistent or has an infinite number of solutions
- (d) is inconsistent
- (2) Let A be a 3×3 matrix such that Ax = 0 for a nonzero x, then
- (a) $|A| \neq 0$
- (b) A is nonsingular
- (c) A is row equivalent to the identity
- (d) |A| = 0. T
- (3) If E is an elementary matrix, then one of the following statements is not true
- (a) $E + E^T$ is an elementary matrix. T
- (b) E^{-1} is an elementary matrix.
- (c) E^T is an elementary matrix.
- (d) E is nonsingular.
- (4) If A and B are $n \times n$ matrices such that Ax = Bx for some none zero $x \in \mathbb{R}^n$. Then
- (a) A B is singular. T
- (b) A B is nonsingular.
- (c) A = B
- (d) None.

- (5) If A is a 3×3 matrix with det(A) = -2. Then det(adj(A)) =
- (a) -2.
- (b) 4. T
- (c) -4.
- (d) -8.
- (d) None.
- (6) If AB = 0, where A and B are $n \times n$ matrices. Then
- (a) either A = 0 or B = 0
- (b) both A, B are singular.
- (c) both A, B are nonsingular.
- (d) either A or B is singular. T
- (7) If B is a 3×3 matrix such that $B^2 = B$. Then
- (a) B is nonsingular.
- (b) det(B) = 0.
- (c) $B^5 = B$. T
- (d) B = I.
- (8) The adjoint of the matrix $\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}$ is
- (a) $\begin{pmatrix} 3 & 2 \\ -1 & 1 \end{pmatrix}$ (b) $\begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix}$ T
- (e) None

- (9) An $n \times n$ matrix A is invertible if
- (a) there exists a matrix B such that AB = I. T
- **(b)** |A| = 0
- (c) Ax = 0 has a nonzero solution
- (d) All of the above
- (10) Let A be nonsingular. Then
- (a) If A is symmetric then A^{-1} is symmetric
- (b) If A is diagonal then A^{-1} is diagonal
- (c) Both (a) and (b) T
- (d) None of the above

(11) The LU decomposition of the matrix
$$\begin{bmatrix} 2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9 \end{bmatrix}$$

(a) $L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -2 & -3 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix}$
(b) $L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 2 & -3 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix}$. T
(c) $L = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 2 & 3 & 1 \end{bmatrix}, U = \begin{bmatrix} 2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8 \end{bmatrix}$
(d) None

is

- (12) If $A^2 = I$ then
- (a) A I and A + I both cannot be nonsingular. T
- (b) A I and A + I are nonsingular.
- (c) A I and A + I are singular.
- (d) $(A I)^{-1} = A + I$

(13) Let A, B be 3×3 matrix |A| = |2B| = 4. Then det $((2AB)^{-1}) =$

- (a) 4.
- **(b)** 16.
- (c) 1.
- (d) None. T
- (14) Assume that the last row in the row echelon form of a 4×4 linear system is $\begin{bmatrix} 0 & 0 & a 3|b 4 \end{bmatrix}$. The system has one solution if
- (a) $b \neq 4$.
- (b) $a \neq 3$. T
- (c) $a \neq 3$ and $b \neq 4$.
- (d) a = 3, b = 4.
- (15) Let A be a 4×4 matrix. If the homogeneous system Ax = 0 has only the trivial solution then
- (a) A is nonsingular.
- (b) A is row equivalent to I.
- (c) RREF of A is I.
- (d) All of the above. T

Q3: (10 points) Let A, B be $n \times n$ nonzero matrices such that AB = 0.

- 1. Show that A must be singular Suppose not, that is A is nonsingular, multiply from left AB = 0 by A^{-1} , we get B = 0, a contradiction.
- 2. Show that Ax = 0 has infinitely many solutions Since A is singular, so Ax = 0 has infinite solutions

Q4: (10 points)

- 1. Let A be $n \times n, n \ge 2$. Show that if A is nonsingular, then adj(A) is nonsingular Aadj(A) = |A|I. Since A is nonsingular, so A^{-1} exists, and so $adj(A) = |A|A^{-1}$ which is nonsingular since $|A| \ne 0$. Or, you can use the determinant: $|A| \ne 0$, so $|adj(A)| = |A|^{n-1} \ne 0$, and so adj(A) is nonsingular.
- 2. Let A, B, AB be $n \times n$ square symmetric matrices. Show that AB = BA $AB = (AB)^T = B^T A^T = BA$

Q5(10 points)

(a) Use Gauss elimination method to solve the linear system whose augmented matrix $\begin{pmatrix} 1 & 1 & 1 & | & 2 \\ -1 & 1 & 1 & | & 4 \end{pmatrix}$ Solution $(-1, 3 - \alpha, \alpha)^T, \alpha \in R$

(b) Find the inverse of
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 | 1 & 0 & 0 \\ -1 & 1 & 1 | 0 & 1 & 0 \\ 1 & 3 & -1 | 0 & 0 & 1 \end{pmatrix} R_2 + R_1, R_3 - R_1 \rightarrow \begin{pmatrix} 1 & 1 & 0 | 1 & 0 & 0 \\ 0 & 2 & 1 | 1 & 1 & 0 \\ 0 & 2 & -1 | -1 & 0 & 1 \end{pmatrix} R_3 - R_2 \rightarrow \begin{pmatrix} 1 & 1 & 0 | 1 & 0 & 0 \\ 0 & 2 & 1 | 1 & 1 & 0 \\ 0 & 0 & -2 | -2 & -1 & 1 \end{pmatrix} R_2 + \frac{1}{2}R_3 \rightarrow \begin{pmatrix} 1 & 1 & 0 | 1 & 0 & 0 \\ 0 & 2 & 0 | 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -2 | -2 & -1 & 1 \end{pmatrix} R_1 - R_2 \rightarrow \begin{pmatrix} 1 & 0 & 0 | 1 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & 0 | 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 | 1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} R_1 - R_2 \rightarrow \begin{pmatrix} 1 & 0 & 0 | 1 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & 1 & 0 | 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 | 1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

So $A^{-1} = \begin{pmatrix} 1 & -\frac{1}{4} & -\frac{1}{4} \\ 0 & \frac{1}{4} & \frac{1}{4} \\ 1 & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$

Or, you can use the cofactor method (not preferable)