Birzeit University
 Mathematics Department
 Math 234

First Exam-answers
Student Name: \qquad Number:
Sections:
Mohammad Saleh \qquad (1 at 11), (4 at 12:20)

Q1 (40 points) Answer the following statements by true or false:

(1) If A, B are square $n \times n$ nonzero matrices such that $A B=0$, then A and B are singular. T
(2) If $A=L U$ is the LU-factorizaton and A is singular then U is singular. T
(3) If A is symmetric and skew symmetric then A must be a zero matrix.(A is skew symmetric if $\left.A^{T}=-A\right) . \mathrm{T}$
(4) If A is an $n \times n$ nonsingular matrix then $\operatorname{det}(\operatorname{adj}(A))=(\operatorname{det}(A))^{n-1}$. T
(5) If the system $A x=b$ is consistent then b is a linear combinations of the columns of A. T
(6) If A, B are square $n \times n$ matrices and $A B$ is singular then A and B are singular. F
(7) If A is row equivalent to B then $\operatorname{det}(A)=\operatorname{det}(B)$. F
(8) If the coefficient matrix of the system $A X=0$ is singular then the system has infinitely many solutions. T
(9) In the linear system $A x=b$, if b is a linear combinations of the columns of A then the system has a unique solution. F
(10) If the row echelon form of the matrix A involves a free variable, then the linear system $A x=b$ has infinitely many solutions. F
(11) a square matrix A is nonsingular iff its row echelon form is the identity matrix. F
(12) If $A B=A C, A \neq 0$, then $C=B . \mathrm{F}$
(13) In the linear system $A x=b$, if b is the first column of A, then the system has infinitely many solutions. F
(14) If $\operatorname{det}(A)=\operatorname{det}(B)$, then $A=B$. F
(15) A square matrix A is nonsingular iff its RREF is the identity matrix. T
(16) In the linear system $A X=b$, if $b=a_{1}-a_{2}+3 a_{4}, a_{1}=-a_{3}$ then the system has infinite solutions. T
(17) If the coefficient matrix of the system $A x=0$ is singular then the system has infinite solutions. T
(18) The vector $(0,0,0)^{T}$ is a linear combination of the vectors $(1,2,3)^{T},(1,4,1)^{T},(2,3,1)^{T}$. T
(19) If $A \neq B$, then $\operatorname{det}(A) \neq \operatorname{det}(B)$. F
(20) If A and B are not invertible, then $\operatorname{det}(A)=\operatorname{det}(B)$. T
(21) If an $n \times n$ matrix A is row equivalent to I_{n} then $\operatorname{det}(A)= \pm 1$. F

Q2:(45points) Circle the correct answer:
1 If A is a 4×3 matrix such that $A x=0$ has only the zero solution, and $b=\left(\begin{array}{l}1 \\ 3 \\ 2 \\ 0\end{array}\right)$, then the system $A x=b$
(a) has exactly one solution
(b) is either inconsistent or has a unique solution. T
(c) is either inconsistent or has an infinite number of solutions
(d) is inconsistent
(2) Let A be a 3×3 matrix such that $A x=0$ for a nonzero x, then
(a) $|A| \neq 0$
(b) A is nonsingular
(c) A is row equivalent to the identity
(d) $|A|=0 . \mathrm{T}$
(3) If E is an elementary matrix, then one of the following statements is not true
(a) $E+E^{T}$ is an elementary matrix. T
(b) E^{-1} is an elementary matrix.
(c) E^{T} is an elementary matrix.
(d) E is nonsingular.
(4) If A and B are $n \times n$ matrices such that $A x=B x$ for some none zero $x \in R^{n}$. Then
(a) $A-B$ is singular. T
(b) $A-B$ is nonsingular.
(c) $A=B$
(d) None.
(5) If A is a 3×3 matrix with $\operatorname{det}(A)=-2$. Then $\operatorname{det}(\operatorname{adj}(A))=$
(a) -2 .
(b) $4 . \mathrm{T}$
(c) -4 .
(d) -8 .
(d) None.
(6) If $A B=0$, where A and B are $n \times n$ matrices. Then
(a) either $A=0$ or $B=0$
(b) both A, B are singular.
(c) both A, B are nonsingular.
(d) either A or B is singular. T
(7) If B is a 3×3 matrix such that $B^{2}=B$. Then
(a) B is nonsingular.
(b) $\operatorname{det}(B)=0$.
(c) $B^{5}=B \cdot \mathrm{~T}$
(d) $B=I$.
(8) The adjoint of the matrix $\left(\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right)$ is
(a) $\left(\begin{array}{cc}3 & 2 \\ -1 & 1\end{array}\right)$
(b) $\left(\begin{array}{cc}3 & -2 \\ -1 & 1\end{array}\right)$.
(c) $\left(\begin{array}{ll}3 & 2 \\ 1 & 1\end{array}\right)$
(d) $\left(\begin{array}{cc}3 & -2 \\ 1 & 1\end{array}\right) \mathrm{T}$
(e) None
(9) An $n \times n$ matrix A is invertible if
(a) there exists a matrix B such that $A B=I$. T
(b) $|A|=0$
(c) $A x=0$ has a nonzero solution
(d) All of the above
(10) Let A be nonsingular. Then
(a) If A is symmetric then A^{-1} is symmetric
(b) If A is diagonal then A^{-1} is diagonal
(c) Both (a) and (b) T
(d) None of the above
(11) The LU decomposition of the matrix $\left[\begin{array}{ccc}2 & 4 & 2 \\ 1 & 5 & 2 \\ 4 & -1 & 9\end{array}\right]$ is
(a) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ -2 & -3 & 1\end{array}\right], U=\left[\begin{array}{lll}2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8\end{array}\right]$
(b) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 2 & -3 & 1\end{array}\right], U=\left[\begin{array}{lll}2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8\end{array}\right] . \mathrm{T}$
(c) $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 \\ 2 & 3 & 1\end{array}\right], U=\left[\begin{array}{lll}2 & 4 & 2 \\ 0 & 3 & 1 \\ 0 & 0 & 8\end{array}\right]$
(d) None
(12) If $A^{2}=I$ then
(a) $A-I$ and $A+I$ both cannot be nonsingular. T
(b) $A-I$ and $A+I$ are nonsingular.
(c) $A-I$ and $A+I$ are singular.
(d) $(A-I)^{-1}=A+I$
(13) Let A, B be 3×3 matrix $|A|=|2 B|=4$. Then $\operatorname{det}\left((2 A B)^{-1}\right)=$
(a) 4 .
(b) 16 .
(c) 1 .
(d) None. T
(14) Assume that the last row in the row echelon form of a 4×4 linear system is $\left[\begin{array}{cccc}0 & 0 & 0 & a-3 \mid b-4\end{array}\right]$. The system has one solution if
(a) $b \neq 4$.
(b) $a \neq 3 . \mathrm{T}$
(c) $a \neq 3$ and $b \neq 4$.
(d) $a=3, b=4$.
(15) Let A be a 4×4 matrix. If the homogeneous system $A x=0$ has only the trivial solution then
(a) A is nonsingular.
(b) A is row equivalent to I.
(c) RREF of A is I.
(d) All of the above. T

Q3: (10 points) Let A, B be $n \times n$ nonzero matrices such that $A B=0$.

1. Show that A must be singular

Suppose not, that is A is nonsingular, multiply from left $A B=0$ by A^{-1}, we get $B=0$, a contradiction.
2. Show that $A x=0$ has infinitely many solutions

Since A is singular, so $A x=0$ has infinite solutions

Q4: (10 points)

1. Let A be $n \times n, n \geq 2$. Show that if A is nonsingular, then $\operatorname{adj}(A)$ is nonsingular $\operatorname{Aadj}(A)=|A| I$. Since A is nonsingular, so A^{-1} exists, and so $\operatorname{adj}(A)=|A| A^{-1}$ which is nonsingular since $|A| \neq 0$. Or, you can use the determinant: $|A| \neq 0$, so $|\operatorname{adj}(A)|=$ $|A|^{n-1} \neq 0$, and so $\operatorname{adj}(A)$ is nonsingular.
2. Let $A, B, A B$ be $n \times n$ square symmetric matrices. Show that $A B=B A$

$$
A B=(A B)^{T}=B^{T} A^{T}=B A
$$

Q5(10 points)
(a) Use Gauss elimination method to solve the linear system whose augmented matrix $\left(\begin{array}{ccc|c}1 & 1 & 1 & 2 \\ -1 & 1 & 1 & 4\end{array}\right)$ Solution $(-1,3-\alpha, \alpha)^{T}, \alpha \in R$
(b) Find the inverse of $\mathbf{A}=\left(\begin{array}{ccccc}1 & 1 & 0 \mid 1 & 0 & 0 \\ -1 & 1 & 1 \mid 0 & 1 & 0 \\ 1 & 3 & -1 \mid 0 & 0 & 1\end{array}\right) R_{2}+R_{1}, R_{3}-R_{1} \rightarrow\left(\begin{array}{ccccc}1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 2 & 1 \mid 1 & 1 & 0 \\ 0 & 2 & -1 \mid-1 & 0 & 1\end{array}\right)$ $R_{3}-R_{2} \rightarrow\left(\begin{array}{ccccc}1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 2 & 1 \mid 1 & 1 & 0 \\ 0 & 0 & -2 \mid-2 & -1 & 1\end{array}\right) R_{2}+\frac{1}{2} R_{3} \rightarrow\left(\begin{array}{ccccc}1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 2 & 0 \mid 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & -2 \mid-2 & -1 & 1\end{array}\right)$
$\frac{1}{2} R_{2},-\frac{1}{2} R_{3} \rightarrow\left(\begin{array}{ccccc}1 & 1 & 0 \mid 1 & 0 & 0 \\ 0 & 1 & 0 \mid 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 \mid 1 & \frac{1}{2} & \frac{-1}{2}\end{array}\right) R_{1}-R_{2} \rightarrow\left(\begin{array}{ccccc}1 & 0 & 0 \mid 1 & \frac{-1}{4} & \frac{-1}{4} \\ 0 & 1 & 0 \mid 0 & \frac{1}{4} & \frac{1}{4} \\ 0 & 0 & 1 \mid 1 & \frac{1}{2} & \frac{-1}{2}\end{array}\right)$.
So $A^{-1}=\left(\begin{array}{ccc}1 & \frac{-1}{4} & \frac{-1}{4} \\ 0 & \frac{1}{4} & \frac{1}{4} \\ 1 & \frac{1}{2} & \frac{-1}{2}\end{array}\right)$
Or, you can use the cofactor method (not preferable)

